Griess algebra
Appearance
(Redirected from Greiss algebra)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (May 2024) |
In mathematics, the Griess algebra is a commutative non-associative algebra on a real vector space of dimension 196884 that has the Monster group M as its automorphism group. It is named after mathematician R. L. Griess, who constructed it in 1980 and subsequently used it in 1982 to construct M. The Monster fixes (vectorwise) a 1-space in this algebra and acts absolutely irreducibly on the 196883-dimensional orthogonal complement of this 1-space. (The Monster preserves the standard inner product on the 196884-space.)
Griess's construction was later simplified by Jacques Tits and John H. Conway.
The Griess algebra is the same as the degree 2 piece of the monster vertex algebra, and the Griess product is one of the vertex algebra products.
References
[edit]- Conway, John Horton (1985), "A simple construction for the Fischer-Griess monster group", Inventiones Mathematicae, 79 (3): 513–540, Bibcode:1985InMat..79..513C, doi:10.1007/BF01388521, ISSN 0020-9910, MR 0782233
- R. L. Griess Jr, The Friendly Giant, Inventiones Mathematicae 69 (1982), 1-102